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A complete semianalytical model is proposed for the simulation of the electronic, mechanical, and piezo-
electric properties of narrow-gap strained semiconductor quantum nanostructures. A transverse isotropic ap-
proximation for the strain and an axial approximation for the strained 8�8 Hamiltonian are proposed. It is
applied extensively to the case of InAs / InP quantum dots �QDs�. Symmetry analysis shows that there does
exist a nonvanishing splitting on the electron P states due to the coupling with valence band. This splitting,
which was not considered before, is found to be smaller in InAs /GaAs QD than in InAs / InP QD. Analytic
expressions for the first and second order piezoelectric polarizations are used to evaluate the perturbation of
electronic states.
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I. INTRODUCTION

The eight-band k · p model of strained zinc-blende
crystals1 has now been extensively used to describe the elec-
tronic structure of III-V semiconductor nanostructures, espe-
cially at the G point �k=0� for interband direct transitions.
Based on envelope function approximation, the eight-band
k · p model is especially well adapted for studying small gaps
materials, and the influence of deformations on interband
coupling. The efficiency of this model has been demon-
strated on various materials systems, such as
In�Ga�As /GaAs,2 InAs / InP,3 or InAsSb / InP.4 Some more
complicated �but more precise� atomistic models have
also been used to describe the fine electronic structure of
such nanostructures.5–7 In these studies, three effects are as-
sumed to have an impact on fine electronic structure: �i� in-
terfacial symmetry, �ii� atomistic strain, and �iii� piezoelec-
tricity.

The eight-band k · p Hamiltonian for bulk strained materi-
als is known8 to exhibit a twofold degenerate spectrum re-
lated to a diagonalization into two 4�4 blocks, exhibiting a
dependence on the k vector. A unitary transformation of this
kind, but independent on the tranverse k vector, has been
introduced to transform the 6�6 Hamiltonian in quantum
wells into two 3�3 blocks9 and more recently10 to transform
the 8�8 Hamiltonian �two 4�4 blocks� for type-II inter-
band cascade lasers. The same approximation was used for
cylindrical quantum wires �QWr�.11,12 The Hamiltonian is
block diagonal with the use of a new basis. For the simula-
tion of the electronic properties of quantum dots �QDs�, the
k · p method2,3,13 is more or less a standard method although
more elaborate theoretical schemes can be employed.5–7 The
strained-dependent 6�6 Hamiltonian for the valence band in
InP / In0.49Ga0.51P QD was simplified into an axially symmet-
ric form in Ref. 14 We propose in the present work to extend
these approaches to the 8�8 Hamiltonian in order to provide
a fast and easy method to evaluate the electronic spectra of
narrow-gap semiconductor QDs. Strain effects are taken
carefully into account. A axial approximation is proposed for
the strained part of the 8�8 Hamiltonian and applied to
InAs / InP and InAs /GaAs QDs.

II. AXIAL APPROXIMATION

We will consider in this paper QD geometries correspond-
ing to the C�v symmetry �rotational symmetry around the
z �001� axis�. The real calculation is performed in two-
dimensional �2D� cylindrical coordinates �r ,z� on truncated
cones of various heights. The chosen dimensions are 8.8 nm
for the cone height and 35 nm for the diameter.3 Our previ-
ous results on InAs / InP QD were obtained either using a
complete three-dimensional �3D� eight-band k · p strained
Hamiltonian3 or a simple one-band k · p Hamiltonian with
strain renormalized constants in 2D cylindrical coordinates.15

FIG. 1. Comparison between �a� CB and �b� valence band �VB�
states close to the band gap in the one-band representation on the
left and in the axial eight-band representation on the right. The CB
and VB ground states are associated, respectively, with Fz= �1 /2
and Fz= �3 /2. The degeneracies of CB and VB first excited states
in the one-band representation �“CB 1P” and “HH 1P”� are lifted by
the coupling to remote bands.
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We may notice that InAs QD grown either on �100� or
�311�B misoriented surface are interesting for applications
purposes.4,16 The present model is, however expected to be
applied only to QD grown on �100� with cylindrical symme-

try. InAs /GaAs QD are finally considered for comparison
purposes.

We start from the 8�8 strained Hamiltonian for bulk ma-
terials given in Ref. 1 or 13.
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When considering first the unstrained part of the Hamil-
tonian, the axial approximation is the same as for the 6�6
bulk Hamiltonian,9,14
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The other terms of the Hamiltonian can be expressed as a
function of the kz and k�=−ie�i���� /�r�� �i /r��� /���� op-
erators, without any more approximations for S, P, and Q.
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To extend the model used in Refs. 9 and 14 to the 8�8 QD
Hamiltonian, we introduce
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By analogy to QWr,11,12 it is straightforward to check that the
8�8 QD Hamiltonian is block diagonal in an Fz basis,
where Fz=Jz+LZ is the total angular momentum. Thus, Fz
becomes a good quantum number �each block corresponds to
one Fz value�. The basis is constructed in a product form
	J ,Jz
	Lz=Fz−Jz
, where the first factor corresponds to the
band-edge Bloch functions �the �u1 ,u2�, �u4 ,u5�, �u3 ,u6�, and
�u7 ,u8� bands are, respectively, related to the conduction
band �CB�, heavy holes �HH�, light holes �LH�, and split-off
bands�.15 The second factor 	Lz=Fz−Jz
 corresponds to the
envelope functions adapted to the usual one-band cylindrical
representation �C�v symmetry�. Lz=0, �1, �2, . . .. are re-
lated to the so-called S , P ,D , . . . radial functions of this
representation.15 All monoelectronic states are a mixing of
eight bands but we will still indicate, if possible, the most
important component �for example, “CB 1-S” for the CB
ground state�. The boundary conditions are of Neuman type
for the S-like radial functions �i.e., functions derivatives are
equal to 0 for r=0, in the frame of a finite elements reso-
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lution� and of the Dirichlet type for all the other radial func-
tions �i.e., functions are equal to 0 for r=0, in the frame of a
finite elements resolution�.

This new basis is interesting for several reasons. The state
degeneracy is automatically taken into account with Fz and
−Fz. It is also possible to obtain a schematic electronic spec-
trum, based only on symmetry considerations. Figure 1 is a
comparison between the �a� CB and �b� valence band �VB�
states close to the band gap in the one-band representation on
the left and in the axial eight-band representation on the
right. The CB ground state is mainly associated with Fz
= �1 /2 and to the u1 or u2 band-edge Bloch functions and
the first S-like envelope functions. The VB ground state is
“HH 1S” with Fz= �3 /2. The electronic gap is then ob-
tained after two separate calculations with Fz= �1 /2 and
Fz= �3 /2. Another important result of this symmetry analy-
sis is that the degeneracies of CB and VB first excited states
�“CB 1P” and “HH 1P”� are lifted by the coupling to remote
bands. The same result was obtained for QD with C4v
geometry.17 It is not related to atomistic, strain, or piezoelec-
tric effects5–7 but simply to the fact that the symmetry of the
system in the eight-band description is represented by the Fz
quantum number instead of the irreducible representations of
the C�v symmetry group.

If the strain field is calculated using a continuum me-
chanical model �elasticity�, the axial approximation �symme-
try reduction from C4v to C�v� consists in defining an effec-

tive modulus C̄.18

Our approximation consists in replacing the elastic

moduli C66=C44 by an effective modulus C̄ in the expression
of the stress tensor obtained by an arbitrary rotation around
the z axis. The elastic moduli are then the same for any frame
chosen around the z axis,

�
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0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C̄

� ,

with
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2
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C11 + C12

2
− C̄, C66� = C̄ ,

and
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2
+ �C44 −

C11 − C12

2
�d .

This is a special case, with four independent parameters

�C11,C12,C44, C̄� of the “transverse isotropic” material type
which corresponds to five independent parameters in the
general case. This type of material is usually called “trans-
verse isotropic.” Notice that this approximation is much less
restrictive than the “full isotropic” approximation usually
proposed.14 Our new proposition is also to use the compo-
nents of strain tensor �rr ,��� ,�zz ,�rz adapted to cylindrical

coordinates �r ,� ,z� instead of Cartesian ones,

�xx = cos2����rr + sin2������, �5�

�yy = sin2����rr + cos2������, �6�

�xz = cos����rz, �yz = sin����rz, �7�

�xy =
sin�2��

2
��rr − ���� , �8�

For bulk materials, the expressions of the acoustic velocities
for various values of d are given in Table I. The best approxi-
mation of the cubic case is the transverse isotropic case with
d=0.5, where acoustic velocities are angular averages of the
corresponding cubic values.

When considering now the strained part of the 8�8 bulk
Hamiltonian,1 we propose also to introduce an axial approxi-
mation. This approximation will be applied for the R� term
by analogy to the unstrained Hamiltonian,

R� =
b�3

2
��rr − ����cos�2�� − i

d

2
��rr − ����sin�2�� . �9�

In order to keep the 8�8 Hamiltonian in a block diagonal,
we propose to replace in R� only, the coefficients containing
the shear deformation potentials b and d by a mean value

b̄�3

2
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2
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2
+
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2
� ,
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b̄�3

2
��rr − ����e−i2�. �10�

This approximation is reasonable for the semiconductors
considered in this study since these parameters are for InAs,
b�3 /2=−1.58 eV, d /2=−1.80 eV, for InP, b�3 /2=
−1.73 eV, d /2=−2.50 eV, and for GaAs, b�3 /2=−1.56 eV,
d /2=−2.25 eV. The other components of the strained Hamil-
tonian can be given in cylindrical coordinates without adding
anymore approximations,

S� = − d�rze
−i�, A� = ac��rr + ��� + �zz�,

P� = av��rr + ��� + �zz�, Q� = b��zz −
�rr + ���

2
� ,
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− Po
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�2

2m0
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1
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−i�� �11�

III. ELECTRONIC PROPERTIES

Figure 2�a� shows the variation of gap energy as a func-
tion of the truncation height �TH� for InAs / InP QD in the
same conditions as the work performed in Ref. 3 �i.e., with a
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wetting layer thickness of 2 ML�. This variation is presented
for several values of d and also for the full isotropic case.
The wetting layer energy is also shown on the top of the
figure. A continuous decrease of the energy gap is predicted
in good agreement with our previous full-3D study3 and ex-
perimental results.15,16 The variation of hydrostatic strain
�hydro=�rr+���+�zz �dotted line� and biaxial strain �biaxial
=�rr+���−2�zz �straight line� is represented for a vertical
line passing through the center of a full cone. It indicates that
the confining potentials �hydrostatic strain� for HH and CB
are almost constant inside the conic QD, whereas LH poten-
tial is stabilized at the top of the cone thanks to the inverted
biaxial strain.3

The variation of the “CB 1S” �FZ= �1 /2�-CB 1P �FZ

= �1 /2 or FZ= �3 /2� and “HH 1S” �FZ= �3 /2�-HH 1P
�FZ= �1 /2 or FZ= �5 /2� energy gaps are reported in Fig.
3�a� �the average values are considered for the first CB and
HH excited states�. A continuous increase of the energy dif-
ference between ground state and excited state is predicted
for the CB with increasing TH. Indeed, the average radius is
decreasing when increasing the TH for the chosen cone. In
the VB, a maximum is reached for a TH equal to 7 ML.
These results are also in good agreement with our previous
work,3 where the energy difference between ground and ex-
cited states has been attributed to the average QD radius,
although no systematic study of this property was performed.
When the TH is further increased, coupling between HH and
LH bands �related to the gap increase �Fig. 2�a�� and the
biaxial strain inversion �Fig. 2�b�� becomes more important
than the decrease of the average radius.

Figure 3�b� shows the variation of the CB first excited
state fine structure splitting EFz=�3/2−EFz=�1/2 �“1P splitting
for electrons”� as a function of the TH. This splitting pre-
dicted from symmetry considerations remains very small
�less than 1 meV� and is related to the couplings of the “CB

TABLE I. General expressions of the longitudinal vL and transverse vT1 ,vT2 acoustic velocities for a bulk material along two directions
of propagation, e.g., �001� and �110� in the �x ,y� plane, for the full isotropic, d=0 and d=1 transverse isotropic, and cubic cases.
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FIG. 2. �Color online� �a� Variation of the gap energy for d=0,
0.5, 0.75, and 1 and for the full isotropic case as a function of the
truncation height �TH� for an InAs / InP QD. The wetting layer gap
energy is also represented. �b� Variations of the hydrostatic strain
�hydro=�rr+���+�zz �dotted line� and the biaxial strain �biaxial=�rr

+���−2�zz �straight line� along a vertical line passing through the
center of a full cone.
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1P” excited states to VB states, mainly HH states. This “1P-
electrons” splitting increases as the energy gap decreases. In
the case of the VB, the first excited state splitting EFz=�1/2
−EFz=�5/2 �“1P splitting for holes”� remains small and
changes sign for a TH on the order of 8 ML. This is again
associated with the strong increase of the HH-LH coupling.

We finally propose �Fig. 4� a comparison between the
InAs / InP and the InAs /GaAs system with the same QD ge-
ometry �TH=2.9 nm�. Due to the larger lattice mismatch in
the InAs /GaAs case, a larger energy gap is found �0.90 eV
for InAs /GaAs and 0.78 eV for InAs / InP�. The same trend
is observed for the calculated CB 1S-CB 1P �30.6 meV for
InAs /GaAs and 26.2 meV for InAs / InP� and HH 1S-HH 1P
�19.7 meV for InAs /GaAs and 16.2 meV for InAs / InP� en-
ergy gaps. As a result, the CB EFz=�3/2−EFz=�1/2 �0.14 meV
for InAs /GaAs and 0.27 meV or InAs / InP� and VB
EFz=�1/2−EFz=�5/2 �0.85 meV for InAs /GaAs and 0.95 meV
for InAs / InP� splittings are smaller for the InAs /GaAs QD.
Figures 4�a� and 4�b� represent, respectively, the isodensity
surfaces containing 75% of the total density for the Fz
= �1 /2 CB ground state and the Fz= �1 /2 CB first excited
state �the difference with the CB Fz= �3 /2 first excited state
is very small�. It is straightforward to check that the spatial
distribution of the electronic density has a cylindrical sym-
metry which is awaited for QD geometries corresponding to
the C�v symmetry. It is possible to introduce a symmetry
breaking by simulating the influence of the piezoelectric po-
tential. Within our axial model, the linear piezoelectric po-

larization P� 1 is equal to18

P� 1 = 2e14sin�2���rzu�r + cos�2���rzu�� +
sin�2��

2

���rr − ����u�z� . �12�

The piezoelectric potential obtained after solving the
Poisson equation is applied as a perturbation to the Fz
= �1 /2 CB and Fz= �3 /2 CB first excited states. The am-
plitude of the piezoelectric potential is small for the
InAs / InP QD. The resulting states �Figs. 4�c� and 4�d�� show
only a small deviation from the cylindrical symmetry. The
perturbation was then applied to the same states in the
InAs /GaAs QD. The C2v symmetry clearly appears on Figs.
4�e� and 4�f�. This is due to the smaller EFz=�3/2−EFz=�1/2
splitting but also to a larger piezoelectric field. This conclu-
sion is not modified for this QD by the inclusion of the
second order piezoelectric potential.5–7,18 The second order
polarization is calculated in the same way as in Eq. �1� of
Ref. 7,

P
 = �
j

ẽ
j
0 � j +

1

2�
jk

B̃
jk� j�k, �13�

where � is the strain in Voigt notation, and e and B are,
respectively, the linear and nonlinear coefficients of the pi-
ezoelectric tensor.

Within our semianalytical approach, a simple expression
is also obtained for the polarization related to this compo-
nent,

FIG. 3. �Color online� �a� Variations of the CB 1S-CB 1P
�straight line� and HH 1S-HH 1P �dotted line� energy gaps as a
function of the truncation height for an InAs / InP QD. �b� Variation
of the CB and VB first excited state splittings, EFz=�3/2−EFz=�1/2
�straight line� and EFz=�1/2−EFz=�5/2 �dotted line� as a function of
the truncation height for an InAs / InP QD.

FIG. 4. �Color online� Comparison between the InAs / InP and
the InAs /GaAs systems with the same QD geometry �TH
=2.9 nm�. The isodensity surfaces containing 75% of the total den-
sity are shown for the �a� Fz= �1 /2 CB ground state and the �b�
Fz= �1 /2 CB first excited state in the InAs / InP QD. Isodensity
surfaces containing 75% of the total density for the eigenstates �c�
and �d� obtained after applying the piezoelectric potential as a per-
turbation to the Fz= �1 /2 CB and Fz= �3 /2 CB first excited
states in the InAs / InP QD. The same result is presented ��e� and �f��
for the InAs /GaAs QD.
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P� 2 = �sin�2���2B114��rr + �����rz + 2B124��rr + ��� + �zz��rz + 2B156��rr − �����rz��� r

cos�2���2B114����rz + 2B124��rr + �zz��rz�u��

sin�2���B114��rr − �����zz + B124��rr
2 − ���

2 � + 2B156�rz
2 ��� z.

� �14�

IV. CONCLUSION

We have shown by comparison to our previous study3 that
accurate results can be obtained in the description of elec-
tronic properties of InAs / InP QD by introducing a few ap-
proximations to the strained 8�8 Hamiltonian. In a previous
study,5 it was shown that, in QD with C�v geometry, a split-
ting of the electronic P states result either from an interface

effect,5–7 a relaxation via the valence force field method2,3,5

or a piezoelectric effect,2,3,5 whereas continuum mechanics
associated to effective mass models produces a vanishing
splitting.15 We show here that, in addition, there is a nonva-
nishing splitting due to the coupling with VB bands. This
splitting which clearly appears here, because a continuum
method and symmetry adapted functions are used, is how-
ever small, particularly in the InAs /GaAs system.
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